
Two-Dimensional Viewing 

Hearn & Baker Chapter 6 

Slides are taken from Robert Thomsons notes. 



OVERVIEW 

 

• Two dimensional viewing pipeline  

• The clipping window 

• Normalizations and viewport transformations 

• OpenGL 2D viewing functions 

• Clipping algorithms  

• Point, line, and fill-area clipping 

 

 

 

 











2-D viewing transformation pipeline 

• Model coordinates 

– Construct world coordinate scene using modeling coordinate 

transformations  

• World coordinates 

– Convert world coordinates to viewing coordinates  

• Viewing coordinates 

– Transform viewing coordinates to normalised coordinates  

• Normalized coordinates 

– Map normalized coordinates to device coordinates  

• Device Coordinates 



Graphics packages commonly allow only rectangular clipping 

windows aligned with the x- and y-axes 

Must implement own clipping and coordinate transformations for other 

form of clipping 









(clipping) window to viewport transformation 

• Zooming 

–  is successive mapping of different sized clipping 

windows to the viewport 

• reducing clip window : zoom in on part of scene 

• increase clip window : zoom out 

• Panning 

– moving a fixed-size clipping window across the scene 



From world coordinates to view coordinates 





Normalization and viewport transformations 

• Some graphics packages combine normalisation and 

window-to-viewport transformations into a single 

operation 

– viewport coordinates are often given in the range 0 to 1.   

• Viewport is within a unit square 

– after clipping the unit square is mapped to the output display 

device 



Window to viewport transformation 

Maintaining relative position of 

points within the two rectangles 







Aspect ratio 

• Relative proportions of objects are maintained 

only if the aspect ratio of the viewport is the 

same as the aspect ratio of the clipping window 

– i.e. only if the scaling factors sx and sy are the 

same 

– Otherwise world objects will be stretched or 

contracted in x or y directions when displayed 



Normalization and viewport transformations 

• In other graphics packages normalisation and clipping 

are applied before window-to-viewport transformation 

– viewport boundaries are specified in screen coordinates 

relative to the display window position 



Transform Viewing Coordinates to Device Coordinates 

• Convert object descriptions to normalized coordinates to make the 

viewing process independent of the requirements of any output device.    

• Clip in normalised coordinates, then transfer the scene description to a 

viewport specified in screen coordinates 

• Clipping algorithms in this transformation sequence are now 

standardised so that objects outside the boundaries x=1, y =1 are 

detected and removed from the scene description 

• At the final step of the viewing transformation the objects in the viewport 

are positioned within the display window 

 



Normalization and Viewport Transformation 

• World coordinate clipping window 

• Normalization square: usually [-1,1]x[-1,1] 

• Device coordinate viewport 

OpenGL clipping routines use normalised coordinates in the range 

-1 to +1 



Transform from clipping window into the normalization square 







































100

2
0

0
2

M
minmax

minmax

minmax

minmax

minmax

minmax

,
ywyw

ywyw

ywyw

xwxw

xwxw

xwxw

normsqwindow

-1 for xv_min and yv_min 

+1 for xv_max and yv_max 



Transform from normalization square into viewport 





























100
22

0

2
0

2

M minmaxminmax

minmaxminmax

,

yvyvyvyv

xvxvxvxv

viewportnormsq

-1 for xw_min and yw_min 

+1 for xw_max and yw_max 



Aspect ratio 

• As in the previous case, relative proportions of objects 

are maintained only if the aspect ratio of the viewport is 

the same as the aspect ratio of the clipping window 

• If the viewport is mapped to the entire area of the display 

window and the size of the display window is changed, 

objects may be distorted unless the aspect ratio of the 

viewport is also adjusted 











to destroy the window 







Clipping 

• Remove portion of output primitives outside 

clipping window 

 

• Two approaches 

– Clip during scan conversion: check each pixel against 

clip limits  

– Clip analytically, then scan-convert the modified 

primitives 



Clipping 

• Apart from clipping to the view volume, clipping 

is a basic operation in many other algorithms 

– Breaking space up into chunks 

– 2D drawing and windowing 

– Modelling 

• May require more complex geometry than 

rectangular boxes 



Two-Dimensional Clipping 

• Point clipping – trivial 

• Line clipping 

– Cohen-Sutherland 

– Liang-Barsky 

– Nicholl-Lee-Nicholl 

• Fill-area clipping 

– Sutherland-Hodgeman 

– Weiler-Atherton 

• Text clipping 





Cohen-Sutherland 

• Clip line against each edge of clip region in turn 

– If both endpoints outside, discard line and stop 

– If both endpoints in, continue to next edge (or finish) 

– If one in, one out, chop line at crossing pt and 

continue 



Cohen-Sutherland 

1 2 
3 

4 

1 2 

3 

4 

3 

4 

1 2 

3 

4 



Cohen-Sutherland 

• Some cases lead to early acceptance or 

rejection 

– If both endpoints are inside all edges 

– If both endpoints are outside one edge 





b1 OR b2 = 0 iff both end points inside clipping window. Accept 

b1 AND b2  0 iff line end points are in the same half-space 

defined by an edge of the clipping window.  Reject 

Else subdivide the line into two segments at the point where it 

crosses a clipping rectangle edge.  Reject segment(s) outside the 

clipping edge 





The Cohen-Sutherland algorithm 

Consider line AD (above). Point A has outcode 0000 and point D has 

outcode 1001. The line AD cannot be trivially accepted or rejected. D is 

chosen as the outside point. Its outcode shows that the line cuts the top 

and left edges (The bits for these edges are different in the two outcodes). 

Let the order in which the algorithm tests edges be top-to-bottom, left-to-

right. The top edge is tested first, and line AD is split into lines DB and BA. 

Line BA is trivially accepted (both A and B have outcodes of 0000). Line DB 

is in the outside halfspace of the top edge, and gets rejected. 
 



update line 

endpoint 

coordinates 





Cohen-Sutherland Line Clipping 

• Fixed order testing and clipping cause needless 

clipping (external intersections) 

Extra clipping here 



Cohen-Sutherland Line Clipping 

• This algorithm can be very efficient if it can accept 

and reject primitives trivially 

– If clip window is large wrt scene data 

• Most primitives are accepted trivially 

– If clip window is much smaller than scene data 

• Most primitives are rejected trivially 

 

• Good for hardware implementation 



Liang-Barsky Line Clipping 

 
Clipping: Overview of Steps 

• Express line segments in parametric form  

• Derive equations for testing if a point is inside the window  

• Compute new parameter values for visible portion of line segment, if 
any  

• Display visible portion of line segment  

 

• The relative speed improvement over Sutherland-Cohen algorithm is 
as follows: 

• 36% for 2D lines 
40% for 3D lines 
70% for 4D lines 



Liang-Barsky Clipping 

• Parametric clipping - view line in parametric form and 

reason about the parameter values 

• More efficient, as not computing the coordinate values at 

irrelevant vertices 

• Clipping conditions on parameter: Line is inside clip 

region for values of t such that: 

 

12max1min

12max1min

      

      

yyyyytyy

xxxxxtxx







Liang-Barsky (2) 

• Infinite line intersects clip region edges when: 

k

k
k

p

q
t 

p1  x q1  x1  x min

p2  x q2  x max  x1

p3  y q3  y1  ymin

p4  y q4  ymax  y1

where 



Liang-Barsky (3) 

• When pk<0, as t increases line goes from 

outside to inside - enter 

• When pk>0, line goes from inside to outside - 

leave 

• When pk=0, line is parallel to an edge (clipping 

is easy) 

• If there is a segment of the line inside the clip 

region, sequence of infinite line intersections 

must go: enter, enter, leave, leave 



Liang-Barsky (4) 

Enter 
Enter 

Leave 
Leave 

Enter 

Leave 

Enter 
Leave 



Liang-Barsky - Algorithm 

• Compute entering t values, which are qk/pk for each 

pk<0 

• Compute leaving t values, which are qk/pk for each 

pk>0 

• Parameter value for small t end of line is:tsmall= 

max(0, entering t’s) 

• parameter value for large t end of line is: tlarge=min(1, 

leaving t’s) 

• if tsmall<tlarge, there is a line segment - compute 

endpoints by substituting t values 

 



Nicholl-Lee-Nicholl Line Clipping 

• Creates more testing regions around the clipping 

window 

– Avoids multiple line-intersection calculations 

• Initial testing to determine if a line segment is 

completely inside the clipping window can be 

done using previous methods 

• If trivial acceptance or rejection is not possible 

the NLN algorithm sets up additional regions 



P0 

P0 

P0 

For line with endpoints P0Pend, there are three different 

positions to consider - all others can be derived from 

these by symmetry considerations 

For each case, we generate specialized test regions for 
other endpoint Pend, which use simple tests (slope, >, <), 
and tells us which edges to clip against.  

 



P0 

Case 1 

T 

B 

R L 

Find which of the four 

regions Pend lies in, 

then calculate the line 

intersection with the 

corresponding 

boundary 



P0 

Case 2 

LR 

LB 

LT 

L 
L 

L 

Find which of the four regions Pend lies in, then 

calculate the line intersection with the corresponding 

boundary 



P0 

Case 3 : 2 possibilities 

P0 

L L L 

LB 
LB TB 

TR 
TR 

T 

LR 

T 
T 

Find which of the five regions Pend lies in, then 

calculate the line intersection with the corresponding 

boundary 



N-L-N Line clipping 

• To determine in which 

region Pend lies we 

compare the slope of 

PendPo to the slopes of 

the boundaries of the 

NLN regions 
P0 LR 

LB 

LT 

L 
L 

L 

Number of cases explodes in 3D, making 

algorithm unsuitable 



Polygon clipping 

• Clipping a polygon fill area needs more than 

line-clipping of the polygon edges 

– would produce and unconnected set of lines 

• Must generate one or more closed polylines, 

which can be filled with the assigned colour or 

pattern 

















Sutherland-Hodgman Polygon Clipping 

• The algorithm correctly clips convex polygons, 

but may display extraneous lines for concave 

polygons 

 

 





• Another approach to polygon clipping 

• No extra clipping outside window 

• Works for arbitrary shapes 

• Avoids degenerate polygons 

 

Outline of Weiler algorithm: 

– Replace crossing points with vertices 

– Form linked lists of edges 

– Change links at vertices 

– Enumerate polygon patches 

 

Weiler-Atherton Polygon Clipping 



Weiler-Atherton Clipping 

clockwise orientation of subject polygon 

13 

11 

12 6 

5 

4 
14 

3 

2 

7 9 

8 
10 

1 

Clip  

Polygon (ep) 
Subject Polygon 

 (sp) 



Gives “Right” Answer 



• Start at first (inside) vertex 

• Traverse polygon until hitting a window 
boundary 

• Output intersection point i 

• Turn right 

• Follow window boundary until next 
intersection 

Weiler-Atherton Clipping 

(clockwise orientation of polygon) 



• Output second intersection 

• Turn right, again, and follow subject polygon 

until closed 

• Continue on subject polygon from first 

intersection point. 

• Repeat processing until complete 

Weiler-Atherton Clipping 



Generalizations of W-A 

• Can be extended to complex situations, arbitrary 

windows 

• Stability issues can arise for such cases 



Weiler-Atherton Polygon Clipping 

counter-clockwise orientation of subject polygon 



Weiler-Atherton Polygon Clipping 

counter-clockwise orientation of subject polygon 

• For an outside-to-inside pair of vertices, follow the 

polygon boundary 

• For an inside-to-outside pair of vertices, follow the 

window boundary in a counter-clockwise direction 



Weiler-Atherton Polygon Clipping 

• Polygon clipping using nonrectangular polygon 

clip windows 



Text Clipping 

• All-or-none text clipping 

– Using boundary box for the entire text 

• All-or-non character clipping 

– Using boundary box for each individual character 

• Character clipping 

– Vector font: Clip boundary polygons or curves 

– Bitmap font: Clip individual pixels 

 


